Project AWARE 2017

Capture
 Photo of Cedar River Coalition partners. Photo from @IWAReduceFloods, the Twitter account for the Iowa Watershed Approach.

Getting Down and Dirty for Cleaner Iowa Rivers

Last week we participated in cleaning up an Iowa river alongside the Iowa Department of Natural Resources and other water partners across the state for Project AWARE. This event is a week-long outdoor expedition to clean up a selected Iowa river. The purpose of this event is to increase awareness of and engagement with Iowa’s public waters. It gives Iowans the opportunity to make a difference in water no matter who they are and what they do in the state. Participants have the opportunity to do the cleanup for one day or stay and camp the whole week.

This year, the event was held on the Cedar River in Mitchell and Floyd Counties from July 10-14. Hundreds of water partners and community members across the state joined for this year’s cleanup. We attended the fourth day of the event. Our starting point was about 19 miles up river from Charles City, Iowa. Once we arrived in Charles City, we had the opportunity to go inner tubing down the Charles City Whitewater course to the campsite to receive a t-shirt and join in on evening fun at the site.

While we only attended one day of the trip, we found many canoe-loads of trash that does not belong in a river, such as barrels, tires, and even a couch!

See photos below for the highlights!

This slideshow requires JavaScript.

Watershed Management Authorities of Iowa

Cultivating a Community of Practice for Watershed Management

Submitted by Melissa Miller, Associate Director of the Iowa Water Center

The word is starting to get out on one of our latest Iowa Water Center initiatives: Watershed Management Authorities of Iowa (WMAs of Iowa). This is a statewide organization to unite the ever-growing numbers of Watershed Management Authorities in the state. The goal of this group is to create a network for WMAs to connect with each other, give WMAs a voice in the state, and serve as an information resource for all watershed management stakeholders. WMAs of Iowa helps cultivate a community of practice for watershed management in Iowa.

Let’s be honest here – we did not come up with this great idea. The need for this group came from the WMA stakeholders themselves, and they are the ones who will drive it. Multiple work sessions this winter with the WMA community resulted in a strategic framework that needed one thing: implementation. IWC proposed to act as a catalyst for implementation by offering administrative capacity – organizing meetings, managing a timeline, maintaining a listserv, coordinating all the work that has already gone into creating a presence for this group.

Right now, we’re in the process of inviting WMAs to join us, and we’re looking for board members from those existing and newly forming WMAs to drive the organization forward. We hope to have a board in place by this fall with a website, newsletter, and other outreach and resource activities to follow.

Why is IWC involved?

Great question.

I’ve confessed before to being the president of the WMA fan club, and waxed poetic about the effectiveness of watershed-based planning. I’ve also been using the admittedly odd metaphor that IWC can act as caulk for water groups in the state – we seek to fill gaps and build capacity that connects groups to use resources effectively and efficiently.

By building up WMAs in the state, we’re promoting a research-backed method of natural resource management that will lead to better water resource management and implementation of creative and practical solutions to water resources related problems. That is the reason we exist, you know. (Need proof? Read the Water Resources Research Act as amended in 2006!)

View from my Windshield: Observations of soil erosion across Iowa

Post written by Hanna Bates, Program Assistant at the Iowa Water Center

For the past couple of weeks, I have been on the road across Iowa. These trips vary in their purpose, but one thing that remains the same is the evident erosion in the fields along my travels. Regardless of where I am – whether it is in the Loess Hills visiting family or in the Des Moines Lobe for a meeting – spring rains have revealed that there are deep cuts in the bare brown soils where lush, even soils used to be.

Cruse et al. (2016) writes:

“Topsoil thinning is closely linked to loss of crop production potential. Typical statewide average erosion rates have only a minor impact on crop yields in the subsequent year. However, cumulative effects are far more significant and contribute to a loss of state revenue that becomes much more important as time progresses.”

The simple fact is that without soil there would be no life. In Iowa, we have high quality soils that, along with some good science and great farmers, enable us to be the top producers in corn, hog, and egg production. This leads to the question: What may be the ultimate cost of this productivity?

Cruse et al. (2016) conducted a study to determine the effects of erosion on commodity yields and to gauge the future impacts on the agricultural economy in Iowa. Researchers studied seven farm sites in Iowa with cropping history and available yield maps. The Daily Erosion Project was used to estimate crop yield impact on soil depth from 2007-2014. The average state loss across those years was 5.7 tons of soil per acre per year. “Assuming a 2.2 bushel per acre corn yield loss across 14 million acres in a given year and a corn price of $4.00/bu, the next year’s crop production loss would equate to approximately $4.3 million total across this land area” (Cruse et al. 2016). There are informational resources and federal programs available for soil conservation practices, but with a short-term economic market system, there is little motivation to participate.

Cruse et al. (2016) writes:

“Short-term minor yield impacts on a per acre basis create little incentive for investing in short-term soil conservation strategies available for many farmland renters. However, as the cumulative effect compounds the economic effect over time, landowners that have longer term planning horizons are much better positioned to recover their financial investments in soil conservation practices.”

To put is succinctly, a loss of soil leads to a loss of productivity, which leads to a financial loss for the state. The impacts of the above findings on decision-making out in the field may be significant given the short-term mindset of our commodity market. Making present-day investments to maintain soils may pay off in the end when compared to short-term commodity gains from year-to-year. Other research has revealed that there is hardly a piece of land in Iowa that is exempt from the problem of erosion. According to Cruse et. al. (2006), soil erosion affects everyone although it is spatially and temporally variable. With 55% of Iowa farmland leased rather than owner controlled (Duffy et al. 2013), an investment in soil saving practices will require candid conversations and real partnerships between a tenant and landowner.

Overall, the first step in making a change is being knowledgeable about your surroundings. Next time you are on the road, look out in the field and really see where you are travelling. Then, compare that to what the data shows on the Daily Erosion Project. You may be surprised about what you learn.

References

Cruse, R., D. Flanagan, J. Frankenberger, B. Gelder, D. Herzmann, D. James, W. Krajewski, Kraszewski, J. Laflen, J. Opsomer, and D. Todey. 2006. Daily estimates of rainfall, water runoff, and soil erosion in Iowa. Journal of Soil and Water Conservation. 61(4): 191-199.

Cruse, Richard M., Mack Shelley, C. Lee Burras, John Tyndall, and Melissa Miller. 2016. Economic impacts of soil erosion in Iowa. The Leopold Center for Sustainable Agriculture. Competitive Grant Report E2014-17.

Duffy, Michael, William Edwards, and Ann Johanns. 2013. Survey of Iowa Leasing Practices, 2012. Iowa State University Extension & Outreach. File C2-15.

Planning for Watershed Success in Eastern Iowa

11108858_986702184682588_7720700685004655431_n
Attendees of the Indian Creek Watershed open house discussing the map of the watershed. Photo from the Indian Creek Watershed Facebook page.

Post edited by Hanna Bates, Program Assistant at the Iowa Water Center

This week, we chatted with Jennifer Fencl, the Solid Waste & Environmental Services Director at The East Central Iowa Council of Governments (ECICOG). Fencl works to bring eastern Iowa stakeholders together to better manage their natural resources and to create a long-term investment in their community. Below are a few highlights from our conversation that outlines some of the behind-the-scenes work in watershed planning.

Please describe your work in watershed management in Iowa.

The East Central Iowa Council of Governments (ECICOG) became involved in watershed management in 2011 when the City of Marion requested assistance in applying for Watershed Management Authority Formation grant funding from the Iowa Economic Development Authority (IEDA) for the Indian Creek watershed. The Indian Creek Watershed Management Authority (ICWMA) was formed under Iowa Code 28E and 466B in August 2012 with 6 of the 7 eligible jurisdictions agreeing to plan for improvements on a watershed level. Funds were made available in 2013 by the IEDA to complete watershed management plans to address flood risk mitigation and water quality. The ICWMA received one of the three planning grants and engaged in a multi-jurisdictional planning approach facilitated by ECICOG in partnership with several local, state, and federal agencies. The resulting Indian Creek Watershed Management Plan (ICWM Plan) identifies strategies and recommendations for stormwater management and water quality protection, including specific implementation activities and milestones. The ICWM Plan was completed and presented to the public in June 2015 and adopted by all six of the ICWMA members at policy maker meetings during July and August of 2015.

As the ICWMA Plan was wrapping up, the City of Coralville requested ECICOG’s assistance in forming a WMA for the Clear Creek watershed. In this case, Coralville was willing to sponsor the WMA formation and planning grant application services. The Clear Creek Watershed Coalition (CCWC) formed as a WMA under Iowa Code 28E and 466B in October 2015 with all 9 of the eligible jurisdictions joining. ECICOG secured DNR watershed planning funds early in 2016 and the CCWC is mid-way through their planning process. Fortunately, the Clear Creek watershed was one of the eight watersheds selected for the Iowa Watershed Approach HUD grant project. The additional watershed planning funds from the HUD grant will add significantly to the resulting watershed plan.

In early 2016, the Middle Cedar Watershed Management Authority (MCWMA) was on its way to formally becoming a WMA and needed some help in completing the agreement filing, developing by-laws, and organizing the Board of Directors. ECICOG assisted the MCWMA in forming under Iowa Code 28E and 466B in June 2016 with 25 of the 65 eligible jurisdictions joining. The MCWMA is one of the eight watersheds selected for the Iowa Watershed Approach HUD grant project.

What are the challenges and rewards in doing work with watershed management?

One challenge that became clear in the Indian Creek process was the disconnect between the watershed (technical) assessment and the local stakeholders. That gap must be bridged to develop meaningful, locally-based goals and implementation strategies.  For me, the reward is watching the interaction between perceived “enemies” (urban/rural; big city/suburb; ag producer/government type) and bringing skeptical people into the process to develop an actual plan… that they ultimately agree to.

What kinds of stakeholders are involved in developing a watershed management plan?

It is critical to include the local Soil and Water Conservation District, government representatives, and the landowners (both urban & rural, flood impacted if possible) in developing goals and strategies. I believe that it is also important to identify the ‘experts’ in your watershed, both locally and from state agencies, early on and have them provide input on what assessment activities and planning services are really needed from an outside consultant. There is a role for everyone to play.

What are the basic steps in putting together a watershed management plan?

Here is my road map:

  1. Invite participation
  2. Identify resource concerns
  3. Assemble experts
  4. Complete assessment work
  5. Present the assessment to a broad list of stakeholders (need good interpreters)
  6. Develop goals, define implementation strategies, and prioritize the strategies
  7. Compile the plan and present the plan for comment
  8. Shop the plan for formal adoption by policy making board/councils.

What is one piece of advice you’d give to those wanting to develop a watershed plan for their community?

Run… kidding, sorta.  Seek help from the Iowa Department of Natural Resources and Iowa Department of Agriculture and Land Stewardship basin coordinators first, and then gauge the interest of the other entities in the watershed. You need to find some champions to help smooth the way for local elected officials.

Development of a Watershed Project Extension

Post submitted by Jordan Kolarik, Wright Soil and Water Conservation District Project Coordinator

boone logoThe Boone River Watershed Nutrient Management Initiative project has been granted additional funding from Iowa Department of Agriculture and Land Stewardship (IDALS). This is in order to extend the project for another three years to increase the use of conservation and water quality practices in Prairie and Eagle Creek Watersheds. In these projects, we will continue working towards meeting Iowa’s Nutrient Reduction Strategy goals. The extension process involved writing a new grant application based on the lessons learned from our first three years.

The project, led by the Wright Soil and Water Conservation District, started in 2014 with funding that was split between two sub watersheds within the Boone River Watershed. For the last three years the project employed two half time watershed coordinators, one that worked on the Eagle Creek Watershed and one who worked on the Prairie Creek Watershed. Project coordinators, among many things, are responsible for holding and attending outreach events, are responsible for project cost share applications and the conservation planning that goes with them, and grant administration for the project.

I started as a half time project coordinator in the Prairie Creek Watershed in the fall of 2015. At the end of last year, I became the full-time coordinator for both sub watersheds in this project. For the project extension application, I had creative control over adjustments to the projects focus, goals, and cost share options. I could utilize the lessons learned from the first three years of the project, my experiences and observations in the first year working with the project, and specific requests that I received from grant funders, partners and producers.

In the extension, we sought to increase collaboration and coordination with partners to implement innovative ways to reach new audiences and to improve technical assistance. We seek to transition to an increased focus on implementation of conservation practices that provide long term benefits (i.e. long term adoption of cover crops and edge-of-field practices).

As a result, I decided to change the cost share options in a way that I believe will encourage long term adoption of cover crops. This is by offering cost share at a higher rate for producers that sign up for three years compared to a one year sign up. Another request includes giving a higher cost share rate to those who are (1) first time users of cover crops, (2) going into a new crop, or (3) users of winter hardy species. We will also offer a higher rate to those who commit to doing both cover crops and strip-till/no-till.

IDALS requested a watershed plan to be completed by the end of the first year of our extension to identify the best locations not only for in-field practices, but also for edge-of-field practices. These include bioreactors, saturated buffers, filter strips, and wetlands. This will allow for a more focused approach to increase edge-of-field practices and help use resources in areas that will provide the greatest conservation benefits. The project will continue to provide cost share assistance for these practices, but will also work to leverage additional funding sources so that we may offer up to 100% cost share.

Education and outreach strategies will emphasize past successful efforts, such as hosting field days and meetings, social media presence, informational mailings, and recognition of local “Farmers Champions.” We are also adopting new ways to reach individuals not informed through these traditional approaches. To increase local partnership and locally led efforts, I came up with the idea to form two community-based groups as a way for local landowners and businesses to stay informed and get involved. The Friends of the Boone River group will help educate and keep the community updated on what is happening in the watershed. This group will also be an informational resource for those who would like to get involved through our mailing list. In addition, local businesses can become a Friend and, if interested, they will be added to a contact list for the project. The formation of The Boone River Watershed Conservation Farmer Advisory Group, led by local “Farmer Champions,” will provide insight to the project as well as education and outreach opportunities beyond the time and scope of the project.

One of the major objectives of this project is to increase the amount of long-term conservation practices on the land, and so permanent changes will be tracked through documenting the number of practices and the number of acres that they treat. It is our goal to have 50 farmers implement long term conservation practices and see a total of 6,000 acres of conservation practices. Lastly, we hope to see measureable improvement in the water quality of Eagle and Prairie Creek, which will be measured through voluntary tile water monitoring, edge of field practice water monitoring, and in-stream watershed scale monitoring. This will allow the project to assess the impacts agriculture management and water quality improvement practices are having on water quality.

The key changes to this watershed project extension have the theme of long-term adoption and increase participation. Everyone has a role to play if we are going to meet the nutrient reduction goals, regardless of where you live or where you work.

If you would like to learn more about the project, contact Jordan Kolarik at jordan.kolarik@ia.nacdnet.net.

Iowa Watershed Management Authorities: Notes from the Statewide WMA Meeting

Post submitted by Melissa Miller, Associate Director of the Iowa Water Center

At a recent Iowa Watershed Approach meeting, I introduced myself (half-jokingly) as the president of the Watershed Management Authority Fan Club. As evidenced by my post last fall after a trip to the Cedar River Watershed Coalition meeting, I am a strong supporter of a watershed approach to natural resource management. Naturally, Watershed Management Authorities (WMAs) are a recipient of my affection.

A brief overview for those not familiar with WMAs: Watershed Management Authorities are a state of Iowa-recognized mechanism for encouraging the collaboration of the different communities within a watershed and enacting watershed based planning, including adoption of conservation practices that mitigate flooding and improve water quality. WMAs were first introduced in Iowa in 2010 when Iowa code 466B was enacted. Major initiatives of this chapter include the formation of the Watershed Resources Coordinating Council (WRCC), Watershed Planning Action Committee (WPAC), the Water Quality Initiative (WQI), and WMAs. There are currently 17 WMAs in the state, with at least five more on deck for formation.

At a statewide WMA meeting on February 7, 2017, representatives from those WMAs gathered in Dubuque, Iowa to give updates and to talk strategy, successes, and collaboration. Mary Beth Stevenson with the Iowa Department of Natural Resources (IDNR) kicked off the afternoon with some fun facts about WMAs, including:

  • 17 WMAs have received funding for planning or implementation through IDNR, Iowa Department of Ag and Land Stewardship, or the Iowa Watersheds Project or the Iowa Watershed Approach (two rounds of grant funding from the U.S. Dept. of Housing and Urban Development)
  • 15 WMAs currently have funding at some level
  • 10 WMAs are funded at a level with enough money for full-time staff and implementation
  • 12 WMAs have or will have some level of paid staff, even if just part-time, funded locally and/or through grant funds

This is a promising start for WMAs as a successful vehicle for watershed management. Even more promising were the updates from the WMAs. Everyone had something to report from across the state. Indian Creek, one of the original six WMAs in 2012, is looking to hire a coordinator and completed an annual review that is turning into a strategic plan. Turkey River WMA, one of the “original HUD” projects  succeeded in influencing policy in all participating political subdivisions (and achieved a 5% flood reduction in Otter Creek with the construction of 29 well-placed structures). In the Walnut Creek WMA a soil and water conservation district staff member found a lamprey (nearly extinct) in a CREP wetland. The Maquoketa River is also in the process of forming a WMA, not because they have outside funding, but simply because they have a group of interested citizens that recognize the benefits of working together.

These are just a few updates of many. My pen could hardly keep up and I couldn’t keep from asking questions. It is extremely energizing to be in a room full of people sharing ideas, concerns and solutions, and I wanted to learn all that I could. After the updates, Polk County WMA Coordinator John Swanson presented the unique activities happening in his part of the state (we will feature that presentation in its own post in the near future). We finished by breaking out into small groups to talk about how to keep WMA momentum going, establishing a WMA coordinator/staff position, watershed plan development and assessment, and how to structure a WMA collaborative group that communicates regularly to move all WMAs forward.

Citizen engagement is critical to the success of watershed management. I will leave you today with a challenge: find the WMA nearest you, even if you don’t live in that watershed, and attend a quarterly meeting. After you attend, you may just want to join my Watershed Management Authority Fan Club.

Iowa State University Research Farms Utilize Conservation Practices for Science, Stewardship

Story originally appeared on the Iowa State University College of Agriculture & Life Sciences website

Iowa State University’s 13 Research and Demonstration Farms around the state have served for decades as models of agricultural and scientific progress for Iowa’s farmers and landowners.

The same holds true for the goals of Iowa’s Nutrient Reduction Strategy.

For years the university’s agricultural researchers have used the farms to study and demonstrate the effects of conservation practices to preserve water quality, keep soils productive and improve the environment. The work has been conducted on acres devoted to research and those not currently in research plots but devoted to producing crops or sustaining livestock.

dsc0318.jpg
Angie Rieck-Hinz talks with farmers about the benefits of different types of cover crops at a field day at the Northern Research and Demonstration Farm.

The ISU research farms strive to serve as models of stewardship by implementing practices on fields, field edges and streamside borders. By practicing what they preach, these farms inspire visitors to do the same.

Matt Schnabel, the superintendent at ISU’s Northern Research Farm near Kanawha, said the farm serves as a model for neighboring farmers.

Cover crops

“The majority of our fields without trials are planted with cover crops. We also have planted milkweed for monarch butterfly conservation and for pollinator habitat,” said Schnabel, a 2010 graduate of ISU in agricultural systems technology. “All these practices add benefits to the land, environment and cropping system. Installing and utilizing these practices on our research farm allows farmers to see things first-hand before implementing on their own farms. We act as a guinea pig and show them what they can do on their land.”

Schnabel said he’d like to put more acres into habitat, reduced tillage, and add saturated buffers. Saturated buffers reduce the movement of nutrients by diverting a portion of tile flow into shallow groundwater. This raises the water table of the buffer and allows organic matter to remove nitrate before the water enters an adjacent stream.

Cover crops are one practice outlined in the Nutrient Reduction Strategy to reduce nitrate leaching from fields. Additionally, cover crops are beneficial to agricultural systems by increasing soil organic matter. Ames-area ISU farms have been using oats, radishes or winter rye as cover crops.

Tim Goode, manager for ISU Research and Demonstration Farms and the Committee for Agricultural Development, a nonprofit affiliated university organization, said that in the last year 800 acres of cover crops were planted on research farms and other acres of cropland. Besides cover crops, the research farms use an array of 18 other nutrient management practices from the strategy, including wetlands, extended rotations and runoff retention.

“The research farms use a broad range of nutrient management practices,” Goode said. “In the Nutrient Reduction Strategy, the Iowa State-led science assessment team lists many research-proven practices to reduce nitrogen and phosphorous losses. Each of these practices have been studied and then implemented multiple times on ISU-managed farmland, either in the Ames area or on farms around the state.”

Long-term projects at the Northeast research farm

The ISU research farm near Nashua celebrated its 40th anniversary last year and has been a long-term example of water quality and conservation success, thanks to a university, local group and agribusiness partnership. The Nashua research farm has been the site of dozens water quality research projects and many field days to show off the results.

The Nashua farm has implemented and maintained many conservation practices, including cover crops, buffers and bioreactors. Its water quality plots — each drained by a separate tile drainage line in a long-term monitoring project — was initiated in 1988, with funding from the Leopold Center for Sustainable Agriculture in the College of Agriculture and Life Sciences.

The farm also installed an early version of a bioreactor, an edge-of-field conservation practice that removes tile flow nitrates by way of denitrification through a woodchip basin underground. The next generation of bioreactor research is closer to campus near Boone at the Agricultural Engineering/Agronomy Research Farm. At this site, scientists monitor nine experimental bioreactors which are being tested for various tile drainage volumes and fill materials with funding provided by the Iowa Nutrient Research Center.

In the coming year, the next installation of water quality projects will be completed by ISU partnering with Committee for Agricultural Development, USDA Natural Resources Conservation Service, Big Creek Watershed Protection Project and the Boone County Soil and Water Conservation District on a university-managed farm near Madrid. At this location, a series of three conservation practices will be installed to reduce the nutrient load entering Big Creek:  saturated buffers, an oxbow wetland and a double-barreled bioreactor. Each of these conservation practices has been outlined in the strategy as effective edge-of-field nutrient management tools.

“Many research and educational needs, demands, uses and decisions impact how ISU-managed land is used annually. But overall, ISU is strongly committed to managing farmland and implementing practices in a manner that supports land stewardship over the long term,” Goode said.

The Iowa Nutrient Reduction Strategy is a science and technology-based framework to assess and reduce nutrients to Iowa waters and the Gulf of Mexico. It is designed to direct efforts to reduce nutrients in surface water from both point and nonpoint sources in a scientific, reasonable and cost effective manner.

Conservation/Nutrient Management Practices by farm

Agricultural Engineering/Agronomy Research Farm near Boone

  • Wetlands
  • Buffers
  • Runoff retention
  • Oat and winter rye cover crops
  • Perennial energy crops
  • Strip tillage
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Extended rotations with alfalfa
  • Managed timing and rates of N fertilizer
  • N fertilizer inhibitor

Allee Memorial Research and Demonstration Farm near Newell

  • Winter rye cover crops
  • Perennial energy crops
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer
  • N fertilizer inhibitor

Armstrong Memorial Research and Demonstration Farm near Lewis

  • Wetlands
  • Winter rye cover crops
  • Buffers
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Extended rotations with alfalfa
  • Managed timing and rates of N fertilizer

Central Iowa Research and Demonstration Farms near Ames

  • Wetlands
  • Bioreactor
  • Oat and radish cover crops
  • Buffers
  • Perennial energy crops
  • Strip tillage
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Extended rotations with alfalfa
  • Managed timing and rates of N fertilizer

Horticulture Research Station near Ames

  • Winter rye cover crop
  • Terraces
  • Runoff retention
  • Perennial crops
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation

McNay Memorial Research and Demonstration Farm near Chariton

  • Oat and winter rye cover crops
  • Extended rotation of alfalfa
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Extended rotations with grass and alfalfa
  • Managed timing and rates of N fertilizer

Muscatine Island Research and Demonstration Farm near Fruitland

  • Winter rye cover crops
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer
  • Strip tillage

Neely-Kinyon Memorial Research and Demonstration Farm near Greenfield

  • Winter rye cover crops
  • Buffers
  • Extended rotations with alfalfa
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer

Northeast Research and Demonstration Farm near Nashua

  • Bioreactors
  • Winter rye cover crops
  • Buffers
  • Extended rotations with alfalfa
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer
  • Strip tillage

Northern Research and Demonstration Farm near Kanawha

  • Extended rotations with alfalfa
  • Oat and winter rye cover crops
  • Buffers
  • Strip Tillage
  • Controlled drainage
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer

Northwest Research and Demonstration Farm near Sutherland

  • Winter rye cover crops
  • Buffers
  • Extended rotations with alfalfa
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer

Southeast Research and Demonstration Farm near Crawfordsville

  • Buffers
  • Extended rotation of alfalfa
  • Strip Tillage
  • Wetlands
  • Controlled drainage
  • Extended rotations with alfalfa
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer
  • Perennial energy crops

Western Research and Demonstration Farm near Castana

  • Buffers
  • Terraces
  • Runoff retention
  • Winter rye cover crops
  • Extended rotations with alfalfa
  • Fertilizer rates based on soil testing
  • Phosphorus fertilizer and manure incorporation
  • Managed timing and rates of N fertilizer
Contacts:

Tim Goode, Iowa State Research Farms, 641-751-0280, trgoode@iastate.edu
Matt Schnabel, ISU Northern Research Farm, 507-923-5368, mschn@iastate.edu
Dana Woolley, Iowa Nutrient Research Center, 515-294-5905, dwoolley@iastate.edu